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Abstract
Understanding how animals use the space in which they are distributed is important for guiding management decisions in 
conservation, especially where human disturbance can be spatially managed. Here we applied distribution modelling to 
examine common dolphin (Delphinus sp.) habitat use in the Hauraki Gulf (36°S, 175°E), New Zealand. Given the known 
importance of the area for foraging and nursing, we assessed which variables affect Delphinus occurrence based on gen-
eralised additive models (GAMs), and modelled probability of encounter. Behavioural information was included to assess 
habitat use by feeding and nursing groups and determine whether persistent hotspots for such activities could be identified 
and meaningfully used as a spatial management tool. Using data collected from dedicated boat surveys during 2010–2012, 
depth and sea surface temperature (SST) were frequently identified as important variables. Overall, seasonal predictive 
occurrence maps for the larger population resembled predictive maps of feeding groups more than nursery groups, suggest-
ing prey availability has important implications for the distribution of Delphinus in this region. In this case, static spatial 
exclusions would not be the best management option as the core areas of use identified for these activities were large and 
shifted temporally. It appears that at the scale examined, most of the Hauraki Gulf is important for feeding and nursing rather 
than specific smaller regions being used for these functions. In cases where static management is not the optimal tool, as 
suggested here for a highly mobile species, a dynamic approach requires more than a boundary line on a map.
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Introduction

Understanding how animals use the space in which they are 
distributed is important for guiding management decisions 
(Guisan et al. 2013). Most studies of cetacean habitat use 
investigate the relationship between occurrence and envi-
ronmental predictors over that of direct prey due to data 
availability (e.g., Panigada et al. 2008; Marubini et al. 2009; 
Garaffo et al. 2010; Santora 2011). For instance, cetacean 
associations with environmental factors such as sea surface 
temperature (SST) or chlorophyll concentration are often 
classified as an indirect relationship, usually used as a proxy 
for prey distribution and concentration (Heithaus and Dill 
2002; Bräger et al. 2003; Cañadas and Hammond 2008; 
Azzellino et al. 2008; Dawson et al. 2013; Eierman and Con-
nor 2014). Biological factors, such as group composition, 
are also known to affect habitat use (Cañadas and Hammond 
2008; Guidino et al. 2014; Hartel et al. 2014; Melly et al. 
2017). Habitat use models help determine which environ-
mental and/or biological variables may be more important 
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to explain species’ distributions (Ferguson et al. 2006) and 
serve as a predictive tool to aid conservation and manage-
ment strategies (Cañadas et al. 2005; Silva et al. 2012; Red-
fern et al. 2013).

Habitat heterogeneity and the biological requirements 
of a species interact to produce patterns in distribution and 
habitat use (Ballance 1992). Therefore, linking behaviour 
to distribution enables a better understanding of the func-
tion behind any habitat use patterns (Norris and Dohl 1980; 
Hastie et al. 2004; Parra et al. 2006; Ribeiro et al. 2007). 
This is important when attempting to manage populations 
exposed to human activities (Soldevilla et al. 2017; Tyne 
et al. 2017) and can be critical for the establishment of con-
servation areas and management strategies (Cañadas et al. 
2005; Ashe et al. 2010). While static ocean management 
can be considered less challenging than dynamic protection 
(Maxwell et al. 2015; Pérez-Jorge et al. 2015), protected 
areas need to be representative of species key biological 
functions (e.g., feeding and breeding habitats; Reeves 2000) 
but also follow shifts in the marine environment. Static man-
agement will be ineffective if habitat use changes over time 
(Hartel et al. 2014).

Common dolphins (Delphinus spp.) are highly mobile 
and have a widespread global distribution, which is known 
to be affected by several environmental parameters such 
as depth, slope, and chlorophyll concentrations, that may 
directly and/or indirectly affect prey distribution and con-
centration (Hui 1979; Au and Perryman 1985). For example, 
common dolphins occur in a range of water depths, using 
shallow (< 100 m) waters in some locations such as the east-
ern Ionian Sea in the Mediterranean (Bearzi et al. 2005) 
and the Gulf St. Vincent, Australia (Filby et al. 2010). In 
other areas, including the western Ligurian Sea in the Medi-
terranean (Azzellino et al. 2008) and around the Azores in 
the mid-Atlantic Ocean (Silva et al. 2014), they use deeper 
pelagic waters (> 1000 m).

In New Zealand, common dolphins have been recorded 
around much of the coastline, with year-round presence 
in some regions and only seasonal occurrence in others 
(Stockin and Orams 2009). However, both sighting and 
stranding data suggest this species is the most concentrated 
off the northeastern coast of the North Island (Stockin and 
Orams 2009). The Hauraki Gulf region has been identified 
as an important area for common dolphins (Stockin et al. 
2008a; Dwyer et al. 2016), specifically for feeding (Stockin 
et al. 2009) and nursing (Stockin et al. 2008a). Stockin et al. 
(2008a) reported a high proportion of groups containing 
calves compared with other populations, and behavioural 
analyses showed that common dolphins use the Hauraki Gulf 
extensively for foraging (46.8% of the activity budget)—
considerably more so than in other regions of New Zealand 
such as the Bay of Plenty (17% of the activity budget) or 
overseas (Stockin et al. 2009).

Common dolphins are subject to significant levels of tour-
ism pressure in New Zealand, especially in the North Island 
where multiple operators with several vessels interact with 
the species in different core areas throughout the known 
range of the species (Neumann and Orams 2006; Stockin 
et al. 2008b; Meissner et al. 2015). In the Hauraki Gulf, 
foraging has been shown to be significantly disrupted by the 
presence of tour boats, resulting in shorter foraging bouts, 
less time spent foraging overall, and more time required for 
foraging dolphins to return to their initial behavioural state 
(Stockin et al. 2008b). For Hauraki Gulf common dolphins, 
any adverse effects of local tourism might be compounded 
for those individual dolphins that move between core areas 
(Meissner et al. 2015; Hupman 2016) by increasing their 
overall exposure to tourism. For this reason, protective 
measures have become necessary within the Gulf to miti-
gate the risks of reduced feeding and nursing due to ongoing 
tourism interactions.

The Department of Conservation is the regulatory body 
responsible for the management of marine mammal spe-
cies in New Zealand waters. Given the need for managers to 
understand the local Hauraki Gulf area in terms of manag-
ing the effects of tourism on common dolphins, but in the 
absence of spatially explicit habitat data for Delphinus, this 
study examined common dolphin habitat use in the Hauraki 
Gulf. We used distribution modelling based on generalised 
additive models (GAMs) to identify important variables 
affecting the occurrence of common dolphins in the inner 
Hauraki Gulf (IHG) and in waters off the west coast of Great 
Barrier Island (GBI; i.e., outer Hauraki Gulf). Predictive 
distribution models were then applied to make predictions 
regarding the probability of encountering Delphinus in the 
IHG or off GBI, with the inclusion of behavioural infor-
mation for feeding and nursery groups to further elucidate 
habitat use patterns. Given the known importance of the 
Hauraki Gulf for feeding and nursing common dolphins 
(Stockin et al. 2008a; Dwyer et al. 2016) and that common 
dolphin presence in the Gulf is significantly affected by lati-
tude and water depth (Stockin et al. 2008a), we hypothesised 
that persistent hotspots for these activities could be spatially 
identified and meaningfully used as part of managed exclu-
sion zones for tourism operations.

Materials and methods

Study area

The Hauraki Gulf (Fig. 1) is a relatively shallow, semi-
enclosed body of water on the northeast coast of the North 
Island, New Zealand (Manighetti and Carter 1999; Black 
et al. 2000). Circulation in the Hauraki Gulf is strongly 
influenced by surface winds and their interaction with tidal 
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currents, in addition to physical barriers such as headlands 
and islands that enhance local upwellings (Black et al. 2000). 
Warm waters from the East Auckland Current (EAUC) flow 
into the northerly entrance of the Hauraki Gulf during sum-
mer and autumn when easterly winds and downwellings are 
more prevalent (Zeldis et al. 2004). Westerly winds that are 
favourable for upwellings prevail in late winter and spring 
(e.g., Chang et al. 2003; Zeldis et al. 2004).

Two regions of the Hauraki Gulf were sampled in this 
study, the IHG and GBI (Fig. 1). The dividing line between 
inner and outer Hauraki Gulf waters was between Takatu 
Point and Kaiiti Point (Fig. 1). The IHG sampling area 
included all waters south of the delineating line and cov-
ered 3480 km2. The 542 km2 GBI study site in the outer 
Gulf mainly incorporated the coastal waters off the western 
side of the island, i.e., all waters between Miners Head in the 

Fig. 1   The Hauraki Gulf, New 
Zealand. The solid black line 
(from Takatu Point to Kaiiti 
Point) indicates the boundary 
between the inner Hauraki Gulf 
(IHG) and outer Hauraki Gulf 
that includes Great Barrier 
Island (GBI), the white lines 
show the 30-m isobath and the 
yellow lines the 100-m isobath. 
Bathymetry is depicted with 
darker shades of blue represent-
ing deeper waters; data courtesy 
of NIWA (Mackay et al. 2012). 
The 5 × 5-km grid is shown 
in grey. Inset: Location of the 
Hauraki Gulf, North Island, 
New Zealand



	 Marine Biology          (2020) 167:62 

1 3

   62   Page 4 of 20

north and Ross Bay in the south, up to a distance of 10 km 
offshore (Fig. 1).

Data collection

Sighting data were collected during dedicated monthly boat 
surveys between January 2010 and November 2012 in the 
IHG and between January 2011 and November 2012 off 
GBI. Surveys were conducted from a 5.5 m boat powered 
by a 100 hp four-stroke engine when weather and sea con-
ditions permitted. Survey design is described in detail in 
Dwyer et al. (2016). In brief, time spent travelling along 
survey tracks actively searching for marine mammals was 
classified as on effort. When the vessel left the survey track 
to approach dolphins, the survey mode switched to off effort 
until returning to the track to resume searching. Off effort 
mode also included all other occasions when the vessel 
was away from the survey track (e.g., returning to harbour 
because of deteriorating sea conditions or collecting data on 
a sighting group). Surveys were conducted in conditions of 
Beaufort sea state 3 or less and vessel speed was maintained 
at ~ 10 knots.

When a common dolphin group was detected, the vessel 
left the survey track (i.e., off effort), approached to within 
50 m of the group/individual, and commenced data collec-
tion. Water depth (± 0.1 m) was measured using an on-board 
depth sounder at the location of the group when first sighted. 
All observational and environmental data were collected 
using an XDA Orbit II Windows Mobile device. Cyber-
Tracker version 3 software (Steventon et al. 2002) was pro-
grammed for logging observational data (e.g., behavioural 
state) and to record the GPS position of the vessel every 60 s 
throughout the survey day. Beaufort sea state was logged at 
15 min intervals. After observational data were recorded, the 
vessel returned to the survey route and resumed on effort to 
continue searching for further individuals/groups.

Group composition (i.e., age class of individuals) and the 
initial behavioural state were visually assessed and recorded 
for each encounter. A group of dolphins was defined as any 
number of individuals observed in apparent association, 
moving in the same general direction and often, but not 
always, engaged in the same activity (Shane 1990). Age class 
and behaviour definitions follow those previously described 
for common dolphins using Hauraki Gulf waters (Stockin 
et al. 2008a, 2009, respectively). The initial behavioural state 
of the group was assessed before the vessel reached within 
50 m. When determining the behavioural state, groups were 
scanned from left-to-right to ensure inclusion of all individu-
als in the group and avoid potential biases caused by specific 
individuals or behaviours (Mann 1999). The behavioural 
state was determined as the category in which > 50% of indi-
viduals were involved in, with all represented behaviours 
logged when an equal proportion of the group was engaged 

in different behaviours (Stockin et al. 2009). Feeding groups 
were classified as all groups for which the initial behavioural 
state ‘forage’ was recorded. Nursery groups were defined 
by the presence of at least one neonate. This conservative 
definition was selected rather than ‘groups that contained at 
least one neonate and/or calf’, because calves are present in 
the Gulf year-round and are found in a high proportion of 
groups (Stockin et al. 2008a).

Data analysis

Sampling data

Grids of 5 × 5-km cells were created for the IHG and GBI 
study areas using ArcGIS version 10.0 (ESRI, Redlands, 
California, USA; Fig. 1). All spatial data were processed 
using ArcGIS and Geospatial Modelling Environment 
(GME) version 0.7.2.0 (Beyer 2012), as per Dwyer et al. 
(2016).

Search effort was expressed as the number of kilometres 
of effort travelled through a grid cell per survey day. Beau-
fort sea state values were assigned to each 5 × 5-km grid 
cell for each sampling occasion (i.e., each time the vessel 
track passed through a cell on a survey day). The value cor-
responded with the sea state recorded at the mid-point of the 
vessel track within each grid cell.

Only on effort sighting data were included in analyses. 
Any dolphin sighting(s) in a grid cell were denoted by a ‘1’ 
and an absence of sightings was denoted by a ‘0’. As such, 
a grid cell received a ‘1’ regardless of the number of sight-
ings (i.e., presence, maximum one per day). For the habitat 
use models driven by behavioural traits, feeding and nursery 
groups were assigned a ‘1’ and groups initially observed 
in other behavioural states or that did not include neonates 
were assigned a ‘0’.

Environmental data

The following environmental variables were considered to 
influence the distribution of common dolphins: depth, slope, 
tidal current, SST, and net primary productivity (NPP). 
These variables were selected because of their known effect 
on common dolphin occurrence in the Hauraki Gulf (Stockin 
et al. 2008a) and other waters worldwide (e.g., Cañadas et al. 
2005; Cañadas and Hammond 2008; Moura et al. 2012). 
All were averaged at the 5 × 5-km grid level as follows: The 
mean depth (m) and slope (°) of grid cells were calculated in 
ArcMap using the NIWA Hauraki Gulf bathymetric dataset 
(Mackay et al. 2012). Depth data for cells where dolphins 
were recorded (i.e., presence) were collected using the on-
board depth sounder and within 100 m of the position of the 
group when it was first sighted. For cells where dolphins 
were not encountered (i.e., absence), depth was retrieved 
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at the midpoint of the track segment in each cell surveyed 
using the NIWA Hauraki Gulf bathymetric dataset (Mackay 
et al. 2012). The mean maximum tidal current (ms−1) for 
each grid cell was extracted from the existing New Zea-
land Marine Environment Classification raster ‘tidal_curr’ 
(https​://www.niwa.co.nz/coast​s-and-ocean​s/our-servi​ces/
marin​e-envir​onmen​t-class​ifica​tion), which was derived 
from a hydrodynamic model that simulated tidal current and 
output the depth-averaged maximum tidal current (Snelder 
et al. 2005). Daily SST data (°C) were obtained for the 
period of the study (i.e., from January 2010 to November 
2012) from the Physical Oceanography Distributed Active 
Archive Centre (PO.DAAC, NASA Jet Propulsion Labora-
tory, Pasadena, California, USA; https​://earth​data.nasa.gov/
about​/daacs​/daac-podaa​c) at a 1 km spatial scale and subse-
quently averaged for each 5 × 5-km grid cell. The daily SST 
data were used in the models and to calculate the monthly 
mean SST values for each region to examine SST patterns. 
The SST within-month standard deviation was calculated 
for each grid cell as a measure of variability that is expected 
to be largest where strong oceanographic activity occurs in 
regions of strong spatial gradients or in regions of variable 
freshwater influence (Hadfield et al. 2002). NPP data (mg C 
m–2 day–1) were remotely collected (www.scien​ce.orego​nstat​
e.edu/ocean​.produ​ctivi​ty) and based on the Vertically Gener-
alised Production Model (VGPM; Behrenfeld and Falkowski 
1997). The VGPM is a model that estimates net primary 
production from chlorophyll using a temperature-dependent 
description of chlorophyll-specific photosynthetic efficiency. 
NPP values were extracted as 8-day averages for each grid 
cell and NPP within-month standard deviation was also cal-
culated. However, the NPP covariates were not included in 
the models because NPP values could not be obtained for 
all grid cells (mainly due to cloud cover, see Dwyer 2014) 
and there were concerns about reliable interpretation of the 
ocean colour data as chlorophyll algorithms do not perform 
accurately in waters where multiple co-existing, but not 
necessarily co-varying, dissolved and particulate marine 
and terrigenous substances affect ocean colour (Morel and 
Prieur 1977; Magnuson et al. 2004; Tzortziou et al. 2007; 
Zheng and DiGiacomo 2017). This is typically associated 

with inshore coastal regions like the Hauraki Gulf that is 
surrounded by New Zealand’s largest city, Auckland, and 
features several estuaries and extensive coastal areas that 
are threatened by increased sediment runoff from the land 
(Seers and Shears 2015).

The spatial variables considered for the models were east-
ing, northing, and distance to shore. Distance to shore (km) 
was calculated using the ArcGIS near tool to measure the 
distance between the centroid of each grid cell and the near-
est point of land. If a cell centroid was located on land, the 
distance to shore was classified as zero.

Models and predictions

Binomial GAMs (with logit link function) were used to 
model the probability of encounter, where the response 
variable was a binary variable indicating sighting presence/
absence within a grid cell. Models were chosen based on 
sensitivity and specificity calculated using Leave-One-Out 
cross-validation (LOOCV; details are described in steps 5 
and 6 below). Separate datasets and models were used for 
each of the following: (1) groups of common dolphins in 
the Hauraki Gulf (IHG and off GBI), (2) feeding groups 
of common dolphins in the IHG, and (3) nursery groups of 
common dolphins in the IHG. The basic analytical workflow 
is shown in Fig. 2 and described in detail below. All analyses 
were carried out using R version 3.5.3 (R Core Team 2014).

Step 1 Sub-sampling the data.
All data were highly unbalanced (with many more non-

occurrences (‘zeroes’) found than occurrences). Conse-
quently, the dataset was reduced so it contained all occur-
rences, but only an equivalent number of randomly selected 
zeroes. In total, ten randomly sampled replicates of zeroes 
were used (in steps 1–5) for each dataset. This reduction in 
zeroes served two purposes:

1.	 It sped-up model fitting, and
2.	 It greatly improved final model sensitivity (i.e., prob-

ability of correctly detecting an occurrence), albeit at 
the cost of lower specificity (correctly identifying those 

Fig. 2   Workflow showing key steps used in each stage of analysis for any dataset

https://www.niwa.co.nz/coasts-and-oceans/our-services/marine-environment-classification
https://www.niwa.co.nz/coasts-and-oceans/our-services/marine-environment-classification
https://earthdata.nasa.gov/about/daacs/daac-podaac
https://earthdata.nasa.gov/about/daacs/daac-podaac
http://www.science.oregonstate.edu/ocean.productivity
http://www.science.oregonstate.edu/ocean.productivity
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units without an occurrence). The number of zeroes was 
considered a hyper-parameter and tuned in step 3.

Step 2 Develop an initial parsimonious model.
The following were fit as covariates in the initial model: 

year, season, northing, easting, depth, slope, distance to 
shore, tidal current, SST, SST within-month standard devi-
ation, Beaufort sea state, and all meaningful interactions 
among the variables. These variables were selected based 
on their hypothesised biological importance and the feasibil-
ity of obtaining reliable measurements, with northing and 
easting included as proxies for unknown variables. The com-
mon dolphin habitat model jointly modelled the occurrence 
of dolphins using data from both areas (IHG and GBI), but 
area was examined as a possible covariate. Austral seasons 
were defined as summer (December–February), autumn 
(March–May), winter (June–August) and spring (Septem-
ber–November) to allow comparisons with previous stud-
ies conducted on common dolphins in the Hauraki Gulf 
(Stockin et al. 2008a). The discrete nature of subset selection 
methods (e.g., stepwise selection—where predictor variables 
are retained or dropped) is known to give biased standard 
errors, p values and regression coefficients and exacerbated 
collinearity problems as well as highly variable models, i.e., 
small changes in the data may give very different models 
(Derksen and Keselman 1992; Breiman 1996; Tibshirani 
1996; Harrell 2001, Zou and Hastie 2005; Morozova et al. 
2015). Consequently, we opted to use the LASSO (Least 
Absolute Shrinkage and Selection Operator), a widely-used 
model selection method (Heinze et al. 2018). The general 
idea of the LASSO is to reduce the residual sum of squares 
by adding a penalty term in the least squares objective func-
tion that shrinks the coefficients towards zero. The penalty 
term of the LASSO effectively adds a penalty term bias in 
an attempt to select a midpoint between high bias (overly 
simplistic) models and high variance (overfitting to the train-
ing data; Hastie et al. 2009). When the LASSO parameter, 
λ, is small, the resultant coefficients are similar to ordinary 
least squares estimates. However, as λ increases, shrinkage 
occurs so that variables that are at zero are discarded. Conse-
quently, a major advantage of LASSO is that it is a combina-
tion of model regularization (i.e., reducing the likelihood of 
overfitting) and a parsimonious selection of covariates. We 
implemented LASSO model selection using the R package 
‘glmnet’ (Friedman et al. 2010). The LASSO parameter, 
which weights the penalty term and regularizes the model, 
was determined by choosing the value that minimizes the 
prediction error rate using tenfold cross-validation (using the 
default values in the function ‘glmnet::cv.glmnet()’.

Step 3 Find the optimal sample size.
A GAM using binomial distribution and logit link func-

tion was used to model occurrence. Non-linear components 

of the GAMs used thin-plate splines fit via restricted maxi-
mum likelihood (REML) within the R package ‘mgcv’ 
(Wood 2017). Non-linearity was examined using component 
plots, and, if the default smoothness appeared to overfit the 
data, then flexibility was constrained by manually select-
ing the number of knots. The GAM model fit covariates 
selected by the LASSO in step 2—this model was used to 
determine the sample size of zeroes that maximized the 
True Skill Statistic (TSS; Allouche et al. 2006), i.e., the 
sum of model sensitivity (how well the model predicted 
occurrences) and specificity (how well it predicted zeroes) 
using LOOCV. For each model [i.e. (1) all, (2) feeding and 
(3) nursery group models], the number of zeroes randomly 
sampled was increased (from its initial value equal to the 
number of occurrences) by 50 to determine if this improved 
the TSS. For each sample size, the TSS was calculated by 
building the model with all occurrences and each of the ten 
random samples of zeroes. The sample size with the highest 
average TSS (from the ten replicates) was determined to be 
the optimal sample size (see step 5 for a description of how 
TSS was calculated). Invariably, we found that increasing 
the number of subsampled zeroes in the model decreased 
sensitivity by more than the concurrent gain in specificity. 
So, in all models, the sample size of (randomly sampled) 
zeroes was the same as the number of occurrences—full 
results are shown in Supplementary Table 1.

Step 4 Fitting GAMs.
Variables were manually added (or removed) in an 

attempt to improve the out-of-sample TSS values of the 
GAMs. Non-linearity was examined using component plots, 
and, if the default smoothness appeared to overfit the data, 
then flexibility was constrained by manually selecting the 
number of knots.

Beaufort sea state was retained in all models because of 
its known effect on detecting cetaceans during field studies 
(e.g., Barlow et al. 1988; Gannier 2005) and by including it 
as an explanatory variable, models could consider at least 
some detection effects (Forney 2000). Similarly, effort was 
used as an offset in all models to account for the fact that 
more search effort is expected to yield more sightings.

Steps 5 and 6 Fitting and assessing candidate models.
Each candidate model was fit using the same ten replicate 

sub-sampled datasets (consisting of all presence data and the 
ten replicate samples of zeroes). All candidate models are 
shown in Supplementary Table 2. Maximizing the average 
TSS was used as the basis for choosing the ‘best model’. TSS 
scores of each candidate model were based on out-of-sample 
model predictions determined using two components:

1.	 Presence/absence of values within the sub-sampled data 
was predicted using LOOCV.
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2.	 Absences that were not included in the sub-sampled data 
were predicted using a parameter set derived from fitting 
the entire sub-sampled data. Model parameter values 
using the entire sub-sampled dataset were used in all 
tables presented in the results.

In this manner, each candidate model had ten sets of pre-
dictions that were used to calculate ten values of TSS.

Non-linear effects of covariates were graphically dis-
played showing how the probability of encounter varied 
when holding all other covariates constant at their mean 
level (Beaufort level was held at zero, and, if the model also 
included a seasonal covariate, the effect assumed the season 
was ‘summer’). Confidence intervals (at the 50% and 95% 
levels) were calculated assuming asymptotic normality and 
are also shown on these plots.

Probability values for each grid cell were calculated at 
the seasonal level (using seasonal averages for non-static 
variables such as SST). The inverse link transformation was 
used to obtain probability values on the scale of the original 
response variable since the results of the calculations were 
based on the scale of the linear predictor (Guisan and Zim-
mermann 2000). For binomial GAMs, the inverse logistic 
transformation is

where LP is the linear predictor fitted by logistic regres-
sion. This transformation provided probability values for 

p (y) =
exp (LP)

1 + exp (LP)
,

each grid cell that were used to create predictive maps using 
ArcGIS. Predictive values were not calculated for a small 
number of grid cells as they were not sampled in all seasons 
(IHG: n = 5; GBI: n = 3). These cells were not colour-coded 
and remained white on the predictive maps.

Results

Sampling data

Survey effort totalled 279 d between January 2010 and 
November 2012. A total of 887.6 h were spent on effort, 
totalling 16,786 km of on effort tracks within the IHG grid 
cells. Between January 2011 and October 2012, 243.9 h 
were spent on effort in the GBI study area, with track effort 
totalling 4017 km. Effort data are detailed further in fig. 2 
and table 2 in Dwyer et al. (2016) and a map showing GPS 
tracklines is presented in Supplementary Fig. 1. Although 
attempts were made to cover all areas homogeneously, effort 
was not uniform across either study site (i.e., the 5 × 5-km 
cells did not receive equal amounts of survey effort). For the 
IHG, 386 on effort dolphin sightings included 59 feeding and 
39 nursery groups; corresponding to 274 total, 52 feeding 
and 37 nursery group ‘grid cell sightings’ (i.e., presence 
per grid cell per survey day). For GBI, 76 on effort dolphin 
sightings included 12 feeding groups and 3 nursery groups; 
corresponding to 44 total, 6 feeding and 3 nursery group 
‘grid cell sightings’.

Table 1   Parameter estimates of significant variables selected in the final common dolphin models for the inner Hauraki Gulf (IHG) and Great 
Barrier Island (GBI; GAM with binomial distribution and logit link function)

Interaction terms are denoted by (-); significance codes are ***0.001, **0.01, *0.05
edf estimated degrees of freedom

Term Estimate SE Z value p value

Intercept 2.101 0.888 2.366 0.02*
Slope 3.014 1.761 1.711 0.09
SST – 0.876 0.184 – 4.765  < 0.001***
Depth-SST 0.017 0.004 3.968  < 0.001***
Slope-SST – 0.242 0.114 – 2.120 0.03*
Beaufort (1) – 0.502 0.365 – 1.375 0.17
Beaufort (2) – 0.639 0.335 – 1.905 0.06
Beaufort (3) – 0.769 0.391 – 1.969 0.05*

edf �
2 statistic p value

Current-Season (summer) 1.000 13.585  < 0.001***
Current-Season (autumn) 1.000 0.932 0.33
Current-Season (winter) 1.006 0.697 0.40
Current-Season (spring) 2.351 7.692 0.04*
Depth-Area (IHG) 2.894 25.590  < 0.001***
Depth-Area (GBI) 2.395 15.463 0.001**
% of deviance explained: 21.0
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Environmental data

For the IHG, grid cells with deeper waters were located cen-
trally and further north, while areas with increased slope 
were observed close to shore (although not in southerly 
regions, e.g., Firth of Thames; Fig. 1). Regions with strong 
tidal currents were apparent in the Firth of Thames, close to 
the Colville Channel and in the channels between islands. 
At GBI, water depths were greater for northern grid cells, 

regions of increased slope mostly occurred in grid cells 
closer to shore, and the greatest tidal currents were adjacent 
to the Colville Channel and between Little Barrier and Great 
Barrier Islands. These patterns are presented in Supplemen-
tary Fig. 2.

Mean monthly SSTs revealed that the coolest and warm-
est water temperatures were experienced in August (IHG 
13.2 ± 0.2  °C; GBI 14.3 ± 0.3  °C) and February 2011 
(IHG 22.0 ± 0.1 °C; GBI 21.6 ± 0.1 °C), respectively. The 

Fig. 3   Interaction between depth and sea surface temperature (SST) 
on the probability of encountering common dolphins in the inner 
Hauraki Gulf (IHG) and off Great Barrier Island (GBI), New Zea-

land. The black line is the average probability; shaded areas show 
one- and two-standard error intervals
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temperature range was smaller at GBI than in the IHG, 
where both the highest and lowest temperatures were 
recorded. Waters also remained comparatively warmer at 
GBI for longer in autumn and winter. During summer, GBI 
inshore waters were cooler than IHG waters, especially com-
pared with western and southern regions of the IHG where 
average temperatures were the highest. In winter, GBI waters 
were warmer than IHG waters, with average temperatures 
decreasing with increasing latitude.

Habitat models

Environmental variables that were frequently important in 
the top habitat models were depth, slope, current, season 
and SST. The chosen and candidate models are presented in 
Supplementary Table 2.

Dolphin habitat use

The final IHG and GBI common dolphin occurrence model 
explained 21.0% of the deviance (Table 1). The model sug-
gested that overall probability of encounter was greater in 

cooler water temperatures, in areas of low to moderate tidal 
current, increased slope, and generally in deeper waters (i.e., 
30–50 m for the IHG and 50–80 m for GBI; Table 1, Figs. 3 
and 4). The exception was for GBI, where the probability of 
encounter was predicted to be greatest in shallower waters 
(< 20 m) with SSTs lower than 13 °C (Fig. 3). Probability of 
encounter in areas with low currents was highly significant 
in summer (Fig. 4). Overall, the most significant variables 
were SST, the depth-SST interaction, the effect of depth in 
the IHG, and the effect of current during summer (Table 1). 
Additionally, Beaufort sea state was a significant factor 
(Table 1), suggesting that the chances of encountering com-
mon dolphins increased with calmer sea states. 

Predictive maps indicated central northern regions of the 
IHG had the greatest probabilities of encountering dolphins 
during all seasons, with higher probabilities in areas close to 
the 30-m depth contour in winter (Fig. 5). The overall prob-
ability of encountering dolphins increased within the IHG 
over winter and spring when water temperatures were cooler 
(Fig. 5; Supplementary Fig. 3). Cells closer to shore also had 
increased probability values when SSTs were lower (Fig. 5; 
Supplementary Fig. 3). Use of the IHG remained relatively 

Fig. 4   Interaction between tidal 
current and season on the prob-
ability of encountering common 
dolphins in the inner Hauraki 
Gulf (IHG) and off Great Bar-
rier Island (GBI), New Zealand. 
The black line is the average 
probability; shaded areas show 
one- and two-standard error 
intervals
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Fig. 5   Predicted seasonal prob-
abilities of encounter for com-
mon dolphins in the Hauraki 
Gulf, New Zealand. Red and 
blue represent the highest and 
lowest probabilities, respec-
tively, as shown in the probabil-
ity of encounter key. Black dots 
show real sighting locations 
from inner Hauraki Gulf (IHG) 
surveys in 2010–2012 and Great 
Barrier Island (GBI) surveys in 
2011–2012. The 30-m isobath is 
shown as a grey line
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low in autumn. At GBI, probability of encounter in northern 
and deeper regions was predicted greater in summer and 
autumn, and greater in southern and shallower regions over 
winter (Fig. 5; Supplementary Fig. 2).

Habitat use by feeding groups

Very few sightings were made relative to the amount of 
effort for feeding or nursery groups in the GBI region; 
therefore, models were only fit for feeding and nursery 
groups in IHG waters. The final model for feeding groups 
explained 18.1% of the deviance (Table 2). The predictive 
maps (Fig. 6) showed similar patterns to the overall dol-
phin occurrence maps (Fig. 5), with a greater chance of 
encountering feeding groups in northern and central regions 
and increased probabilities in winter and spring compared 
with summer and autumn when considering the full range 
of depth categories. The overall probability of encounter-
ing feeding groups was predicted greatest in cooler waters, 
although this result was not significant (p = 0.08; Table 2). 
Figure 6 showed that in general, winter and spring showed 
the highest probabilities of encounter in shallow water (note 
the evidence of this relationship was only strong for spring), 
with increased probability of encounter during summer at 
depths of approximately 40–50 m (Fig. 7). High probability 
cells were more concentrated on the eastern side of the IHG 
in winter compared with spring and summer (Fig. 6). 

Habitat use by nursery groups

The final nursery group model explained 43.0% of the devi-
ance (Table 3). Probability of encountering nursery groups 
declined significantly in autumn and increased in deeper 
waters and in areas of decreased slope (Table 3). The pre-
dictive maps suggested that the probability of encountering 
nursery groups was greater within more central and northerly 
regions of the Gulf in spring and summer (Fig. 8). Beaufort 
sea state was also a significant factor suggesting the chances 
of detecting a nursery group increased in calmer sea states.

Hotspots for feeding and nursery groups

Based on the predictive mapping, common dolphin use of 
the Hauraki Gulf was relatively widespread for both feed-
ing and nursery groups. Both activities were predicted to 
occur more commonly across central and northerly areas 
of the Hauraki Gulf, with the same general areas used 
for both feeding (Fig. 6) and nursing (Fig. 8) functions. 
Therefore, the core areas of use that could be spatially 
identified for these activities occurred over large spatial 
scales and shifted temporally (i.e., winter and spring for 
feeding groups, and summer for nursery groups). Spatially, 
it appears that most of the Gulf area is used for these func-
tions rather than any distinctive smaller regions within 
the Gulf being important for feeding and nursery groups.

Table 2   Parameter estimates of significant variables selected in the final common dolphin model (GAM with binomial distribution and logit link 
function) for feeding groups in the inner Hauraki Gulf (IHG)

Interaction terms are denoted by (-); significance codes are ***0.001, **0.01, *0.05
edf estimated degrees of freedom

Term Estimate SE Z value p value

Intercept 0.904 1.617 0.559 0.58
SST – 0.169 0.097 – 1.745 0.08
Beaufort (2) 0.521 0.538 0.969 0.33
Beaufort (3) 0.637 0.721 0.883 0.38

edf �
2 statistic p value

Depth-Season (summer) 1.839 5.905 0.08
Depth-Season (autumn) 1.000 3.450 0.06
Depth-Season (winter) 1.000 2.793 0.95
Depth-Season (spring) 1.000 6.014 0.01*
% of deviance explained: 18.1
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Fig. 6   Predicted seasonal 
probabilities of encounter for 
feeding groups of common dol-
phins in the Hauraki Gulf, New 
Zealand. Red and blue represent 
the highest and lowest prob-
abilities, respectively, as shown 
in the probability of encoun-
ter key. Black dots show real 
sighting locations from inner 
Hauraki Gulf (IHG) surveys in 
2010–2012. The 30-m isobath is 
shown as a grey line
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Fig. 7   Interaction between 
depth and season on the prob-
ability of encountering feeding 
groups of common dolphins in 
the inner Hauraki Gulf (IHG), 
New Zealand. The black line is 
the average probability; shaded 
areas show one- and two-stand-
ard error intervals

Table 3   Parameter estimates of 
significant variables selected 
in the final common dolphin 
model (GAM with binomial 
distribution and logit link 
function) for nursery groups in 
the inner Hauraki Gulf (IHG)

Significance codes are ***0.001, **0.01, *0.05

Term Estimate SE Z value p value

Intercept 2.333 1.917 1.212 0.23
Depth 0.047 0.030 1.562 0.12
Slope – 8.210 2.666 – 3.079 0.002**
Season (autumn) – 3.032 1.129 – 2.687 0.007**
Season (winter) – 0.975 1.292 – 0.755 0.45
Season (spring) – 0.052 0.799 – 0.065 0.95
Beaufort (1) – 3.772 1.553 – 2.428 0.02*
Beaufort (2) – 3.387 1.385 – 2.446 0.01*
Beaufort (3) – 4.976 1.635 – 3.043 0.002**
% of deviance explained: 43.0
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Discussion

Disturbance to marine mammals from vessel interactions 
and the associated effects (e.g., increased energetic demands, 
acoustic disturbance, and reduced juvenile survival) are well 
documented (Buckstaff 2004; Bejder 2005; Karpovich et al. 
2015; Machernis et al. 2018). Spatial management, such as 
restricting access to a habitat, is one tool often recommended 

to reduce exposure to human activity (e.g., Tyne et al. 2015). 
However, our analyses indicate that static spatial manage-
ment of common dolphins in the Hauraki Gulf would not be 
the optimal management tool to mitigate the known risks 
of reduced feeding associated with ongoing tourism vessel 
interactions. This was evident by the absence of persistent 
hotspots for feeding or nursery groups that could be mean-
ingfully used as part of managed exclusion zones.

Fig. 8   Predicted seasonal 
probabilities of encounter for 
nursery groups of common dol-
phins in the Hauraki Gulf, New 
Zealand. Red and blue represent 
the highest and lowest prob-
abilities, respectively, as shown 
in the probability of encoun-
ter key. Black dots show real 
sighting locations from inner 
Hauraki Gulf (IHG) surveys in 
2010–2012. The 30-m isobath is 
shown as a grey line
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Our predictive mapping improves the current understand-
ing of the spatial and temporal habitat use of the Hauraki 
Gulf by common dolphins and creates a baseline for spatial 
planning and decision making. However, our results come 
with some limitations. Modelling the occurrence of mobile 
species inhabiting a highly dynamic environment is chal-
lenging given the degree of random variability and the large 
number of possible explanatory variables used to try to cap-
ture the heterogeneity in environmental conditions. While 
some variables were highly significant for certain regions 
in this study, the explained deviances for two of the models 
(the IHG/GBI and the feeding group models) were relatively 
low. Such results are often typical for this type of data (e.g., 
Ferguson et al. 2006; Cañadas and Hammond 2008; Embling 
et al. 2010) and have been attributed to factors such as the 
spatial scale of the study area (Cañadas and Hammond 2008) 
or a mismatch in predictor variables used as proxies for prey 
distribution or abundance (Ferguson et al. 2006). For exam-
ple, our analyses may have been limited by not including a 
measurement for productivity in our models. As a result, 
spatial management tools such as spatial exclusion zones for 
tourism operations can be affected by low levels of certainty 
associated with predictive models.

The environmental variables that were most frequently 
significant in the habitat models presented here were depth 
and SST. Depth was also identified as one of the most 
important factors driving the spatial distribution of ceta-
ceans in the Hauraki Gulf in a recent aerial survey study 
(Kozmian-Ledward 2014). Model results indicated that 
the greatest probability of encountering common dolphins 
within the IHG was during the colder months of winter and 
spring (when SSTs were lowest) and within deeper waters 
(30–50 m), the latter consistent with a previous study of 
common dolphin occurrence (Stockin et al. 2008a). The 
highest chances of encountering common dolphins off GBI 
was also in deeper waters (50–80 m) during warm SSTs; 
but in shallow waters (< 20 m) during very low SSTs of 
13 °C. There did not appear to be any well-defined spatial 
trends in SST that could explain these patterns (see Supple-
mentary Fig. 3). It seems more likely that encounter prob-
abilities may be related to prey movements, i.e., that depth 
is a proxy for prey distribution and/or location in the water 
column. For example, pilchard (Sardinops neopilchardus) 
are known to be more abundant in bays and harbours in New 
Zealand when water temperatures are cooler (Ministry for 
Primary Industries 2013) and are also known to form com-
pact schools particularly during the summer (Fisheries New 
Zealand 2018). Both of these factors may help explain the 
increased probability of encountering Delphinus in the IHG 
during the colder months but off GBI during the warmer 
months.

Northern and central regions of the IHG were used year-
round by common dolphins, while for shallow inshore 

waters, the probability of encounter increased during win-
ter and spring. Short-beaked common dolphins (D. delphis 
ponticus) in the Black Sea are known to move from off-
shore waters to shallow coastal waters to feed on Black Sea 
anchovy (Engraulis encrasicolus ponticus) and Black Sea 
sprat (Sprattus sprattus) in the winter and summer, respec-
tively (Reeves and Notarbartolo di Sciara 2006). A change 
in prey availability and/or their seasonal distribution within 
Gulf waters may have also affected the change in common 
dolphin habitat use.

Although the occurrence of clupeid fish such as pilchards 
and sprats (Harengula antipoda) has been documented as 
erratic and their migrations difficult to predict (Young and 
Thomson 1926), they have been described as locally abun-
dant in some regions of New Zealand such as Wellington 
harbour in winter and spring (Young and Thomson 1926; 
Ministry for Primary Industries 2013). Changes in seasonal 
abundance or movements of pilchards in the Hauraki Gulf 
have not been assessed, as with other important species in 
the diet of common dolphins, such as jack mackerel (Tra-
churus spp.). However, limited fisheries catch data obtained 
from the Ministry for Primary Industries for the period of 
this study show some alignment with the findings presented 
here, with a significant proportion of the annual pilchard 
catch taken during the winter month of August (Dwyer 
2014). Baker (1972) suggested that minimum water tem-
peratures of approximately 14 °C may be warm enough to 
support year-round spawning of pilchards off northeastern 
New Zealand. Such a consistent source of prey could explain 
the year-round use of the Hauraki Gulf by common dolphins, 
as suggested by Stockin et al. (2008a).

The inclusion of functional data into the models provided 
further information about habitat use of common dolphins 
in the Hauraki Gulf, as previously demonstrated by Cañadas 
and Hammond (2008) for short-beaked common dolphins in 
the southwestern Mediterranean. Feeding groups were pre-
dicted to occur more commonly in northern-central regions 
of the IHG during winter and spring. These data correspond 
well with the results of an earlier (2002–2005) behavioural 
study that found most foraging common dolphins were found 
in the deepest waters of the IHG, and primarily during win-
ter and spring (Stockin et al. 2009). While feeding groups 
were generally observed in deeper waters in this study, it 
was still possible to encounter a feeding group in shallow 
regions, but only when SSTs were at their lowest. Overall, 
the seasonal predictive occurrence maps for the larger popu-
lation resembled seasonal predictive maps of feeding groups 
more than nursery groups, suggesting prey availability likely 
has important implications for the general distribution and 
habitat use patterns of common dolphins in the IHG.

Nursery groups in the IHG were most prevalent during 
summer, in line with other North Island studies (Stockin 
et al. 2008a; Meissner et al. 2014) and common dolphin 
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research conducted overseas (Cañadas and Hammond 2008). 
The prediction for increased use of areas with similar water 
depths (~ 40 m) by nursery groups (Fig. 8) and the general 
population (Fig. 5) is consistent with Meissner et al. (2015) 
who also reported groups in similar water depths regard-
less of group composition in the Bay of Plenty. However, 
these results differ to those reported by Stockin et al. (2008a) 
who found that groups including neonates were typically 
observed in shallow waters of less than 20 m depth. It is not 
clear whether the different observations represent a change 
in habitat use over the period of the two studies or differ-
ences in survey methodologies. The latter seems less likely 
given that most of the data analysed in Stockin et al. (2008a) 
were collected from a tour vessel that spent more time in 
deeper waters searching for whales, and thus presumably 
would have had more opportunities to encounter neonates in 
deeper waters. Unfortunately, small sample sizes precluded 
the fitting of functional models for GBI to help elucidate 
these patterns further.

The predictive maps revealed relatively widespread use 
of the central Hauraki Gulf for both feeding and nursery 
groups, albeit with temporal differences in use (feeding 
groups most prevalent in winter and spring, and nursery 
groups most prevalent in summer). Spatial exclusion zones 
for tourism operations would, therefore, be difficult to imple-
ment for these activities given the areas that were identified 
as important were large, covering most of the areas used 
by common dolphins and consequently the tour vessels. As 
such, placing a large static spatial exclusion boundary the 
size of the area used by feeding and nursery groups would 
not be the best management tool in terms of stakeholder 
support or practicalities such as the ease of enforcement 
(Wilhelm et al. 2014).

Our study used one spatial scale (i.e., 5 × 5 km grid cells 
within a combined 4022 km2 area of the Hauraki Gulf) 
to assess habitat use. Previous studies have examined the 
effects of different spatial scales on cetacean distribution and 
habitat use with mixed results; for example Redfern et al. 
(2008) did not identify significant differences in selected 
variables, their functional forms, or high and low-density 
regions of predictive maps when assessing different spatial 
resolutions for dolphin habitat use in the eastern tropical 
Pacific. González García et al. (2018) examined high and 
coarse spatial resolutions when investigating habitat pref-
erences of Azorean blue whales (Balaenoptera musculus), 
reporting that both scales were valid and beneficial for cap-
turing larger oceanographic features (coarse resolution) and 
more localised short-term events (high resolution). Con-
versely, Scales et al. (2017) assert that the use of coarse-
scale data risks significant predictive inaccuracy in habitat 
models. It cannot be ruled out that using a finer resolution in 
our study may have identified several smaller distinctive core 
areas of use given that species distribution patterns may be 

governed by processes at multiple scales (Dormann 2007). 
However, it seems unlikely that any potential identification 
of smaller hotspots would result in a recommendation for the 
use of spatial exclusion zones in this case given the tempo-
ral shifts in intense use of the central and northern regions 
of the Gulf. Moreover, any smaller hotspots would still be 
expected to be widely distributed across large areas of the 
Gulf. Additionally, selecting a wider spatial extent [e.g., 
northeastern North Island waters—for which movements of 
common dolphins outside of the Hauraki Gulf are known 
(Hupman 2016)] may have identified the entire Hauraki 
Gulf as the preferential area for the population, as previously 
suggested (Dwyer et al. 2016). However, the aim of this 
study was to investigate habitat use within the Gulf, given 
the extent and known effects of tourism within the region. 
Following the results presented here, it would be prudent 
to examine habitat use at such a wider scale to determine 
the relative importance of Hauraki Gulf waters for common 
dolphins and indeed other cetaceans.

Visual surveys for cetaceans are known to be affected 
by imperfect detection; i.e., detection of groups/individuals 
is rarely perfect (Bailey and Adams 2005). This is due to 
factors such as sighting methods, sighting cues, search con-
ditions, and group size (Barlow et al. 2001). While survey 
protocols in the present study were kept consistent during 
the entire sampling period to try to minimise factors affect-
ing detection, and variables (Beaufort sea state and effort) 
that were deemed to have significant effects on the detection 
of cetaceans during boat surveys were incorporated into the 
models, these variables did not account for detection prob-
ability explicitly or spatially. As such, the results we present 
will underrepresent true levels of habitat use since imperfect 
detection will result in negatively biased results (MacKenzie 
et al. 2002). Nevertheless, the identification of high and low 
use areas in this study is expected to be consistent whether 
detection probability was accounted for or not, as demon-
strated in Dwyer (2014) when assessing predictions of com-
mon dolphin habitat use in the Hauraki Gulf based on both 
generalised linear models and occupancy models.

In cases where the use of static management areas is not 
the preferred tool, particularly for highly mobile species, 
other management priorities should be considered. Man-
agement options other than static spatial exclusion include 
but are not limited to increased enforcement of regulations, 
reassessment of permissible viewing distances and ves-
sel speeds, and temporal closures (Machernis et al. 2018). 
Dynamic ocean management (i.e., management that rapidly 
changes in space and time in response to changes in the 
ocean and its users) has also been proposed as a promising 
tool that allows for near-real-time adjustments to conserva-
tion strategies (Maxwell et al. 2015; Abrahms et al. 2019). 
Hazen et al. (2018) demonstrate that dynamic closures of 
the California drift gillnet fishery could be up to ten times 
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smaller than existing static closures while simultaneously 
supporting fishing opportunities and maintaining adequate 
protection of endangered nontarget species. Examples of 
existing dynamic protection mainly relate to specific indus-
tries such as fisheries, for example, the temporary restriction 
of certain types of commercial fishing in areas of the Atlan-
tic where unexpected aggregations of the critically endan-
gered North Atlantic right whale (Eubalaena glacialis) are 
observed (Asaro 2012). Dynamic management tools that use 
real-time predictions of species distributions to minimise 
fisheries impacts have also been successfully applied to 
loggerhead sea turtle (Caretta caretta) in the Pacific Ocean 
(Howell et al. 2015) and southern bluefin tuna (Thunnus 
maccoyii) off south-eastern Australia (Hobday and Hart-
mann 2006; Hobday et al. 2011). Furthermore, the concept 
of mobile marine protected areas (that are not industry-
specific and could focus on protecting habitats or species 
and thereby offer a more ecosystem-based approach) and its 
application to protect highly mobile species of concern is a 
promising development for the future (Maxwell et al. 2015).

For common dolphins in the Hauraki Gulf, the suitability 
of alternative management options such as time-out peri-
ods or avoidance of feeding and nursery groups should be 
investigated. Additionally, the importance of the Hauraki 
Gulf region for feeding groups of common dolphins high-
lights the need to protect their food source. However, stock 
assessments for the main prey species of common dolphins 
are lacking and they continue to be commercially fished at 
levels that may or may not be sustainable (Dwyer 2014). The 
use of dynamic management tools such as mobile marine 
protected areas (an ideal approach for mitigating the effects 
of tourism interactions on common dolphins in the Hauraki 
Gulf) will become possible as temporal and spatial predic-
tions of species distributions improve with enhanced data 
availability through improved technology.

The option of temporal exclusion based on the results pre-
sented here is not feasible given the relatively coarse tempo-
ral resolution (season) of this study. Fernandez et al. (2017) 
suggested that exploring temporal resolutions of 7–8 days is 
most appropriate for highly dynamic ecosystems and highly 
mobile species. However, more fine-scale temporal analyses 
were not possible in this study as it was difficult to collect 
enough sighting data for analyses at the weekly/monthly 
scale. Future studies should collect sightings data over a 
longer monitoring period to ensure a larger sample size for 
defining long-term hotspots.

Conclusion

Depth and SST were identified as the most important 
predictors of common dolphin occurrence in the Hauraki 
Gulf in this study. The core areas of use for nursery and 

feeding groups that could be identified from the predictive 
mapping were large and shifted temporally. Therefore, we 
suggest that spatial exclusion zones would not be the best 
management tool from a stakeholder or practical enforce-
ment perspective for mitigating any adverse impacts on 
these functions in this region. In cases where static man-
agement is not the optimal tool, as suggested here for a 
highly mobile species, a strategic approach requires more 
than a boundary line on a map. For the Hauraki Gulf, we 
recommend the consideration of alternative management 
strategies, including monitoring and if need be, conserv-
ing critical prey resources within the region. Finally, our 
distribution modelling and predictive mapping are avail-
able to support management decisions, particularly those 
relating to marine spatial planning and effects of tourism.
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